

THE ROAD TO SDV

HOW ARCHITECTURES LEAD THE WAY

#OneStepAhead

VECS 2024 | The Road to SDV – How architectures lead the way | Dr. Lars Völker © 2024 Technica Engineering GmbH. All rights reserved.

2024-05-14/15

THE ROAD TO SDV TABLE OF CONTENT

- #1 | INTRODUCTION
- #2 | COMMON MISTAKES
- #3 | ESSENTIAL TECHNOLOGY & APPROACH
- #4 | HOW TO SPEED UP DEVELOPMENT?
- #5 | SUMMARY

#1 THE ROAD TO SDV INTRODUCTION

THE ROAD TO SDV

WHAT IS THE GOAL?

- Adding features to vehicles via Software after production
 - Keeping products "fresh"
 - Fixing products without classical recalls
 - Potentially selling features to customers later
 - Important: Allowing to define the product after hardware is chosen
- Focus on Software
 - Fast and effective "Software Factories"

VECS 2024 | The Road to SDV – How architectures lead the way | Dr. Lars Völker © 2024 Technica Engineering GmbH. All rights reserved.

THE ROAD TO SDV

WHERE DID WE START FROM?

- In the last decades, a lot was pushed to the supply chain
 - Hardware design by Tier-1s, Software stacks by Tier-2s, etc.
 - Commodities improved pricing and quality
 - External partners could leverage on common solutions
- Typical process:
 - OEMs hand-over vast number of specifications
 - ARXML used to "configure" essential parameters
 - OEMs integrate vehicle
- Vehicles became cost-driven hardware software co-designs
 - New features often required new hardware

#2 THE ROAD TO SDV COMMON MISTAKES

THE ROAD TO SDV

COMMON MISTAKE: COST OPTIMIZATION FIRST

- E/E Architecture often too cost-optimized
 - Enough CPU cycles, RAM, Bandwidth left?
 - Topology flexible enough?

2024-05-14/15

- Proprietary solutions vs. future proofing
 - Which makes it easy to add more features later?

Ethernet MAC, LLC, and VLANs Credit-based Shaper TSN **IEEE 802.1Q** features **IEEE 802.1Qav** 100BASE-TX 100BASE-T1 1000BASE-T1 10BASE-T1S Multi-Gig **IEEE 802.3 IEEE 802.3 IEEE 802.3** IEEE 802.3cg IEEE 802.3ch Technica Example Protocol Stack for Ethernet-based Communication (Simplified, without Security and other aspects)

THE ROAD TO SDV

COMMON MISTAKE: COMPLEXITY EXPLOSION

- Ethernet Protocol Stack
- Red flags:
 - Proprietary extensions
 - Proprietary optimizations
 - Proprietary protocols
 - Complex protocol conversion
 - Domain-specific solutions
 - Diversion from state-of-the-art
- Compare and benchmark!

THE ROAD TO SDV

COMMON MISTAKE: LIMITED SCALABILITY

- Legacy Communication to Ethernet
 - Common option: Signal2Service (S2S)
- Issues:
 - Limited Scalability (high overhead in GW)
 - Breaks E2E Safety, breaks Security
 - Resampling even worse
 - Usage prediction challenging
- Better:
 - Use simple PDU Gatewaying only

THE ROAD TO SDV

COMMON MISTAKE: SECURITY TOO LATE

- Traditional Security Process (reactive):
 - Define Use Cases
 - Determine what to protect
 - Implement Security mechanisms
- Red flags:
 - Proprietary Security Solutions
 - Many different crypto algorithms/protocols
 - Multiple similar solutions (e.g., key setup)
 - More application-based than generic solutions

#3 THE ROAD TO SDV ESSENTIAL TECHNOLOGY & APPROACH

ESSENTIAL TECHNOLOGY & APPROACH ETHERNET FOR FLEXIBLE PLATFORMS

- Automotive Ethernet allows for extensible platforms
 - Allows for high bandwidth (e.g., 100 and 1000Mbit/s)
- Switches operate in line-speed
 - Data in Ethernet Networks can be fully handled by hardware
 - Scalability limited by line-speeds and receiver capacity
- Additional benefits:
 - Virtualization with VLANs allow separation of domains, if needed
 - Switched Ethernet provides best scalability of all alternatives

Switched Ethernet 100 Mbit/s, 1000 Mbit/s, 2500 Mbit/s, 5000 Mbit/s, 10000 Mbit/s,

...

ESSENTIAL TECHNOLOGY & APPROACH

MACSEC AS PLATFORM SECURITY

- Security needs to be built into the platform
- MACsec is the best solution for protecting Ethernet
 - Hardware acceleration to achieve full through-put
 - Only hop-by-hop MACsec can protect everything
 - Automotive MACsec can start in about 10ms
- Combine with at least VLANs, filters, and ACLs
- Platform security must come very early!

#4 THE ROAD TO SDV HOW TO SPEED UP DEVELOPMENT?

VECS 2024 | The Road to SDV – How architectures lead the way | Dr. Lars Völker I 15 © 2024 Technica Engineering GmbH. All rights reserved.

HOW TO SPEED UP DEVELOPMENT? AUTOSAR APPROACH

- AUTOSAR
 - Created Architectures, Formats, and Terminology
 - Very good for OEM delegating work to Tier-1s
- AUTOSAR Config Format ARXML
 - XML-based, huge \rightarrow very hard to debug or ensure quality
 - Generation and Integration often not fully automated and slow
 - Every version different, vendor and OEM differences
 - Not repo compatible \rightarrow hard to support modern processes
 - Stack view instead of vehicle view
- For SDV, improvements needed!

Schema 23-11 → 9.8 MB

Single files often multiple 100 MB!

HOW TO SPEED UP DEVELOPMENT? TESTING AND VALIDATION

- Automated testing of software units becoming popular
- But: ECU testing and Integration Testing often too manual
 - ECU software needs to automatically be tested via CI/CD
 - Easily 50 500k test cases needed for ECU validation
- Do not forget to use your data:
 - Automated analysis of traces from vehicles and integration setups
 - Record all communication with meta data and high-res timestamps
 - Analysis: Link load, load for different Traffic Aggregates, etc.

#5 THE ROAD TO SDV SUMMARY

THE ROAD TO SDV SUMMARY

- SDV allows for faster and later software delivery
- Architecture needs to be designed for SDV
- Lower complexity and avoid proprietary technology
- Platform security instead of late security concept
- ARXML and development toolchain should be improved
- Automated ECU and integration testing is a must
- Please avoid common mistakes

#6 GUIDELINE PRESENTATION CONTACT

Technica Engineering GmbH

Leopoldstraße 236 80807 Munich Germany

DR. LARS VÖLKER

Technical Fellow lars.voelker@technica-engineering.de +49 175 11 40 982