Disclaimer:

The following slides were originally shown in November 2010 at the **2011 Ethernet & IP @ Automotive Technology Day** in Munich.

They are made available here to preserve one of the first public SOME/IP presentations as they are not publicly accessible anymore.

Slides might have changed slightly do to formatting and conversion.

Keep in mind:

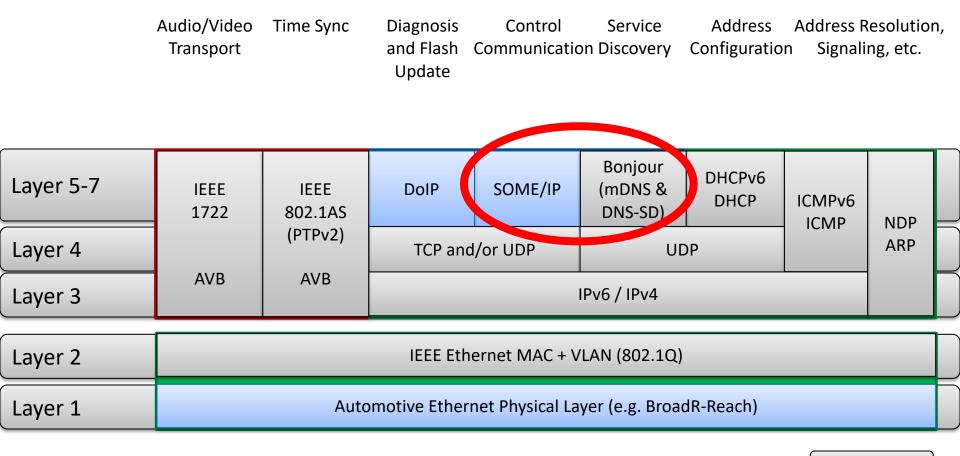
The usage of Bonjour as Service Discovery technology was changed shortly after this presentation. Due to different concerns SOME/IP-SD was created.

ONE FOR ALL

INTEROPERABILITY FROM AUTOSAR TO GENIVI

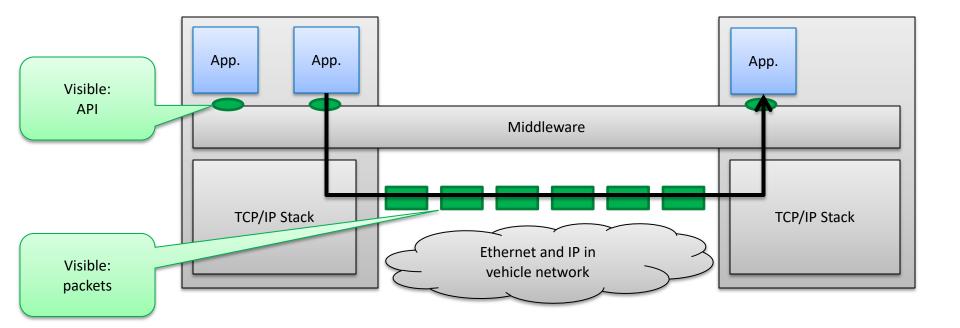
Agenda

- Introduction
 - Middleware as one building block of Ethernet- and IPbased vehicles
- Different existing Middleware solutions
- SOME/IP as Middleware building block
- Summary and Next Steps


Communication Protocols

Layer 5-7	IEEE 1722	IEEE 802.1AS	DolP	SOME/IP	Bonjour (mDNS & DNS-SD)	DHCPv6 DHCP	ICMPv6	NDP	
Layer 4		(PTPv2)	TCP and/or UDP		UDP		TCIVII	ARP	
Layer 3	AVB	AVB	IPv6 / IPv4						
Layer 2	IEEE Ethernet MAC + VLAN (802.1Q)								
Layer 1	Automotive Ethernet Physical Layer (e.g. BroadR-Reach)								

IT Standard Automotive


Communication Protocols

IT Standard Automotive

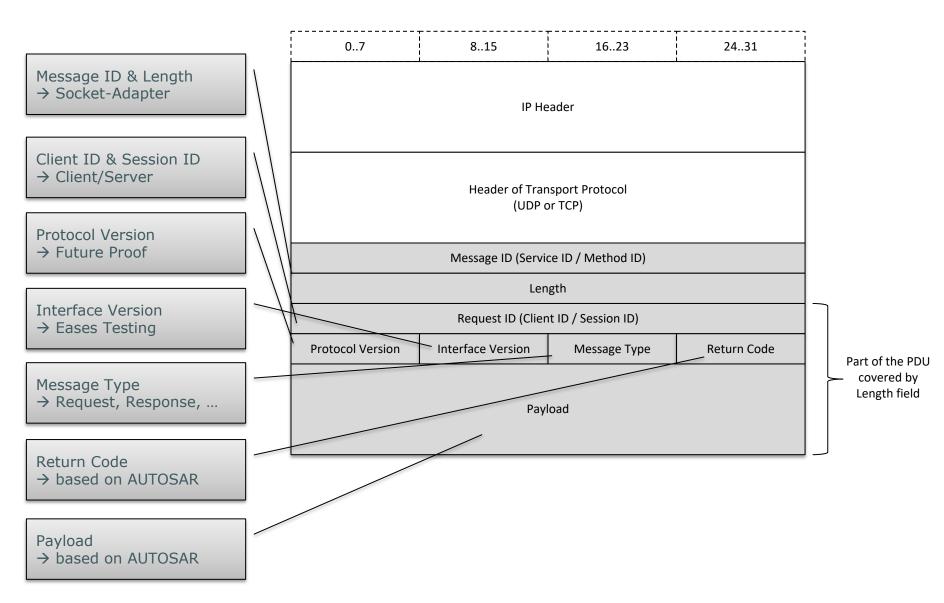
Definition "Middleware"

- Allows applications to transparently communication
 - Simplifies development using unique APIs
 - Uses communication protocols and Ethernet

Existing solutions

- A large number of solutions exists
- Many of them (e.g. DCE RPC, Etch, Corba, GPB, THRIFT, ...) were evaluated
 - Propagation/usage, standards, performance, size, availability, licenses,
 ...
- Results:
 - Most of them IT-centered
 - Limited propagation, often single application
 - No 100% fit for the automotive requirements
 - add-on (e.g. UDP support) and strip-down needed
 - No AUTOSAR solution
 - Integration and standardization inside AUTOSAR critical
 - OEMs did not converge on single IT-solution

There is no existing solution meeting automotive requirements!



The solution: SOME/IP

- AUTOSAR today:
 - Socket-Adapter integrates TCP/IP-Stack
 - Client/Server allows Request/Response-Communication
 - Sender/Receiver allows "Fire-and-Forget"-Communication
- However:
 - All these have requirements on the header layout!
- Solution:
 - Development of a solution based on AUTOSAR (mappings, ...) that is independent of AUTOSAR (license, ...)

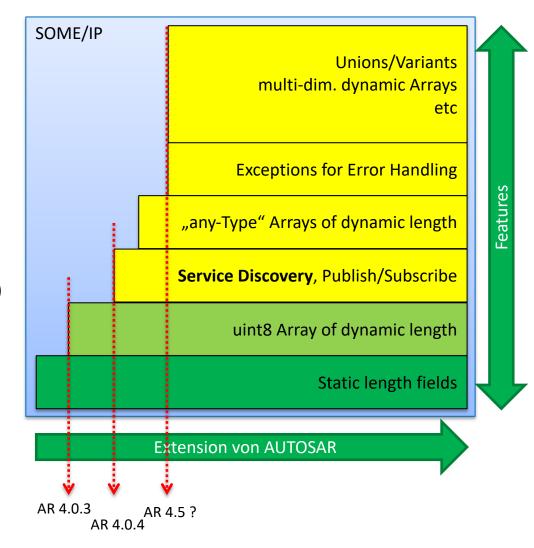
Service Oriented Middleware over IP (SOME/IP).

Header Layout

De/Serialization

• AUTOSAR Types (Integer LE oder BE):

Туре	Description	Size [bit]	Remark
boolean	TRUE/FALSE value	8	
uint8	unsigned Integer	8	
uint16	unsigned Integer	16	
uint32	unsigned Integer	32	
sint8	signed Integer	8	
sint16	signed Integer	16	
sint32	signed Integer	32	
float32	floating point number	32	IEEE 754 binary32 (Single Precision)
float64	floating point number	64	IEEE 754 binary64 (Double Precision)


- Selected additional features for Infotainment and other:
 - Unicode Strings (fixed length / dynamic length)
 - Arrays (fixed length / dynamic length)
 - Structs, Union/Variants, ...
- Based on ECU's in-memory-layout
 - no compression or dynamic encoding
 - static mapping \rightarrow easier migration
 - today's tools can be easily adapted

Additional Features

- Service Discovery
 - Signal startup/shutdown of services (e.g. camera)
 - Can announce certain parameters (capabilities)
 - Is also used to implement publish/subscribe/notification
 - Receiver announces notification-consumer
 - Based on Apple Bonjour and is going to be IETF-Standard:
 - <u>https://datatracker.ietf.org/doc/draft-cheshire-dnsext-multicastdns/</u>
 - <u>https://datatracker.ietf.org/doc/draft-cheshire-dnsext-dns-sd/</u>

Service Oriented Middleware over IP (SOME/IP).

- Goal: Solution for AUTOSAR, GENIVI and others
- Interoperability with AUTOSAR 4.0.2/.3 and later
- For the future: Back port additional features for infotainment into AUTOSAR
- AUTOSAR-compatiblity enables acceptability over OEMs (political reasons)
- Interface definition based on FIBEX4Services (FIBEX 4.0)

Next Steps and targets


- Standardization
 - Extending AUTOSAR for additional features (e.g. Infotainment)
 - Introducing and extending SOME/IP concepts in GENIVI
 - SOME/IP as proposal for ISO 17215 (Ethernet Cameras)
- Implementation
 - Different implementations started or will start soon
 - Target plattforms: AUTOSAR, GENIVI, and very small embedded ECU (e.g. Ethernet Camera)
- Tooling
 - Supporting tool vendors to introduce SOME/IP

Conclusion

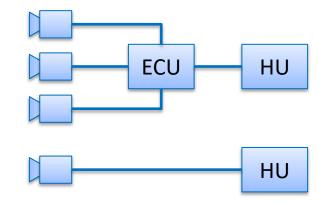
- Many solutions exist, none fits the requirements
 - BMW created SOME/IP based on AUTOSAR
 - Features for Infotainment are being added
- SOME/IP scales:
 - Small ECU (e.g. Ethernet Cameras)
 - AUTOSAR ECU
 - Infotainment ECUs like Head Units
- SOME/IP is efficient
 - In-Memory-Layout -> efficient de/serialization
 - Can run on embedded (small micro in camera)
 - On-wire efficiency only second degree criterion

Backup

SOME/IP as the bridge between AUTOSAR and GENIVI

- SOME/IP is one of the building blocks needed to ...
 - allow infotainment and driver assistance to easier communicate
 - simplify design of ECUs and vehicle network (less gateways)
- Allows for an extensible platform enabling innovations

Middleware: Missing pieces


- Needed pieces to create a middleware:
 - Signals and RPC \rightarrow SOME/IP
 - Service Discovery \rightarrow Bonjour
 - Security \rightarrow (different solutions possible)
- What else do you need?
 - Ethernet
 - TCP/IP protocols
 - Audio Video Bridging (AVB)

Requirements of ISO 17215 Use Cases

- Use cases
 - Camera <-> ECU <-> HU
 - Camera <-> HU

- ECU and HU must understand:
 - Video Stream
 - Control Communication
- Protocols must be supported by automotive systems
 - AUTOSAR, GENIVI, and others

